The following is a comprehensive list of function names for my hyperoperator-related naming system.
Array notation used is Bird's Array Notation.
Existing names created by Jonathan Bowers will be highlighted blue.
Existing names created by Sbiis Saibian will be highlighted green.
Existing names created by Aarex Tiaokhiao will be highlighted red.

Function name Existing name Shorthand Array equivalent FGH growth rate (approximate)
Addition a+b f1(n)
Multiplication a*b f2(n)
Exponentiation {1} {a,b} f3(n)
Tetration {2} {a,b,2} f4(n)
Pentation {3} {a,b,3} f5(n)
Hexation {4} {a,b,4} f6(n)
Heptation {5} {a,b,5} f7(n)
Octation {6} {a,b,6} f8(n)
Enneation {7} {a,b,7} f9(n)
Decation {8} {a,b,8} f10(n)
Vigintation {18} {a,b,18} f20(n)
Trigintation {28} {a,b,28} f30(n)
Centation {98} {a,b,98} f100(n)
Chiliation {998} {a,b,998} f1000(n)
Myriation {9998} {a,b,9998} f10000(n)
Megation {M.} {a,a,b} fω(n)
Mega-addition Expansion {M.1} {a,b,1,2} fω+1(n)
Mega-multiplication Multiexpansion {M.2} {a,b,2,2} fω+2(n)
Mega-exponentiation Powerexpansion {M.3} {a,b,3,2} fω+3(n)
Mega-tetration Expandotetration {M.4} {a,b,4,2} fω+4(n)
Mega-pentation {M.5} {a,b,5,2} fω+5(n)
Mega-hexation {M.6} {a,b,6,2} fω+6(n)
Duomegation {2M.} {a,a,b,2} fω2(n)
Duomega-addition Explosion {2M.1} {a,b,1,3} fω2+1(n)
Duomega-multiplication Multiexplosion {2M.2} {a,b,2,3} fω2+2(n)
Duomega-exponentiation Powerexplosion {2M.3} {a,b,3,3} fω2+3(n)
Duomega-tetration Explodotetration {2M.4} {a,b,4,3} fω2+4(n)
Trimegation {3M.} {a,a,b,3} fω3(n)
Trimega-addition Detonation {3M.1} {a,b,1,4} fω3+1(n)
Trimega-multiplication {3M.2} {a,b,2,4} fω3+2(n)
Trimega-exponentiation {3M.3} {a,b,3,4} fω3+3(n)
Trimega-tetration {3M.4} {a,b,4,4} fω3+4(n)
Quadrimegation {4M.} {a,a,b,4} fω4(n)
Quadrimega-addition Pentonation {4M.1} {a,b,1,5} fω4+1(n)
Quintimegation {5M.} {a,a,b,5} fω5(n)
Quintimega-addition Hexonation {5M.1} {a,b,1,6} fω5+1(n)
Sextimegation {6M.} {a,a,b,6} fω6(n)
Sextimega-addition Heptonation {6M.1} {a,b,1,7} fω6+1(n)
Septimegation {7M.} {a,a,b,7} fω7(n)
Septimega-addition Octonation {7M.1} {a,b,1,8} fω7+1(n)
Octimegation {8M.} {a,a,b,8} fω8(n)
Octimega-addition Ennonation {8M.1} {a,b,1,9} fω8+1(n)
Nonimegation {9M.} {a,a,b,9} fω9(n)
Nonimega-addition Deconation {9M.1} {a,b,1,10} fω9+1(n)
Expomegation {eM.} = {{1}M.} {a,a,a,b} fω2(n)
Expomega-addition Megotion {eM.1} = {{1}M.1} {a,b,1,1,2} fω2+1(n)
Expomega-multiplication Multimegotion {eM.2} = {{1}M.2} {a,b,2,1,2} fω2+2(n)
Expomega-exponentiation Powermegotion {eM.3} = {{1}M.3} {a,b,3,1,2} fω2+3(n)
Expomega-tetration Megotetration {eM.4} = {{1}M.4} {a,b,4,1,2} fω2+4(n)
Expomega-megation {eM.M.} = {{1}M.M.} {a,a,b,1,2} fω2(n)
Expomega-mega-addition Megoexpansion {eM.M.1} = {{1}M.M.1} {a,b,1,2,2} fω2+ω+1(n)
Expomega-duomegation {eM.2M.} = {{1}M.2M.} {a,a,b,2,2} fω2+ω2(n)
Expoduomegation {e2M.} = {{1}2M.} {a,a,a,b,2} f2)2(n)
Expoduomega-addition Gigotion {e2M.1} = {{1}2M.1} {a,b,1,1,3} f2)2+1(n)
Expotrimegation {e3M.} = {{1}3M.} {a,a,a,b,3} f2)3(n)
Expotrimega-addition Terotion {e3M.1} = {{1}3M.1} {a,b,1,1,4} f2)3+1(n)
Expoquadrimegation {e4M.} = {{1}4M.} {a,a,a,b,4} f2)4(n)
Expoquadrimega-addition Petotion {e4M.1} = {{1}4M.1} {a,b,1,1,5} f2)4+1(n)
Duoexpomegation {2eM.} = {2{1}M.} {a,a,a,a,b} fω3(n)
Duoexpomega-addition Powiaination {2eM.1} = {2{1}M.1} {a,b,1,1,1,2} fω3+1(n)
Duoexpoduomegation {2e2M.} = {2{1}2M.} {a,a,a,a,b,2} f3)2(n)
Triexpomegation {3eM.} = {3{1}M.} {a,a,a,a,a,b} fω4(n)
Quadriexpomegation {4eM.} = {4{1}M.} {a,a,a,a,a,a,b} fω5(n)
Quintiexpomegation {5eM.} = {5{1}M.} {a,a,a,a,a,a,a,b} fω6(n)
Tetramegation {tM.} = {{2}M.} {a,b[2]2} fωω(n)
Tetra-by-duomegation {t2M.} = {{2}2M.} {a,b[2]1[2]2} fωω2(n)
Tetra-by-expomegation {teM.} = {{2}{1}M.} {a,b[3]2} fωω2(n)
Tetra-by-duoexpomegation {t2eM.} = {{2}2{1}M.} {a,b[4]2} fωω3(n)
Duotetramegation {2tM.} = {2{2}M.} {a,b[1,2]2} fωωω(n)
Tritetramegation {3tM.} = {3{2}M.} {a,b[1[2]2]2} f4ω(n)
Quadritetramegation {4tM.} = {4{2}M.} {a,b[1[1,2]2]2} f5ω(n)
Quintitetramegation {5tM.} = {5{2}M.} {a,b[1[1[2]2]2]2} f6ω(n)
The following names are from a less well-defined extension of the naming system!
Pentamegation {pM.} = {{3}M.} {a,b[1\2]2} fε0(n)
Pentaduomegation {p2M.} = {{3}2M.} {a,b[1[1\2]2\2]2} fε02(n)
Duopentamegation {2pM.} = {2{3}M.} {a,b[1\1[1\2]2]2} fεε0(n)
Hexamegation {hM.} = {{4}M.} {a,b[1\1\2]2} fζ0(n)
Heptamegation {{5}M.} {a,b[1\1\1\2]2} fη0(n)
Megamegation {{M.}M.} {a,b[1\\2]2} fφ(ω,0)(n)
Duomegamegation {{2M.}M.} {a,b[1\\1\\2]2} fφ(ω2,0)(n)
Expomegamegation {{eM.}M.} {a,b[1[3]\2]2} fφ(ω2,0)(n)
Tetramegamegation {{tM.}M.} {a,b[1[1,2]\2]2} fφ(ωω,0)(n)
Pentamegamegation {{pM.}M.} {a,b[1[1\2]\2]2} fφ(ε0,0)(n)
Megamegamegation {{{M.}M.}M.} {a,b[1[1\\2]\2]2} fφ(φ(ω,0),0)(n)
Megamegamegamegation {{{{M.}M.}M.}M.} {a,b[1[1[1\\2]\2]\2]2} fφ(φ(φ(ω,0),0),0)(n)
Limit of naming scheme {a,b[1/2]2} fφ(1,0,0)(n)