The Current State of Busy Beaver Records

As of 03/07/24

More info can be found on the BBChallenge website and the corresponding wiki.

Current 2-symbol records for S(n) (maximum shifts function) and Σ(n) (busy beaver function):

n S(n) Σ(n) Machine Link
1 1 1 1RZ1RA
2 6 4 1RB1LB_1LA1RZ Radó (1962)
3 21 5 1RB1RZ_1LB0RC_1LC1LA Shen (1963)
3 14 6 1RB1RZ_0RC1RB_1LC1LA Shen (1963)
4 107 13 1RB1LB_1LA0LC_1RZ1LD_1RD0RA Brady (1983)
5 47,176,870 4098 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA Marxen & Buntrock (1990)
6 >10^^15 >10^^15 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE Kropitz (2022)
7 >10^^15 >10^^15 Same as above
8 >10^^15 >10^^15 Same as above
9 >10^^30 >10^^30 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1RI1RG Green (1964), Ligocki (2023)
10 >10^^(10^10^15) >10^^(10^10^15) 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1RJ1RH Green (1964), Ligocki (2023)
11 >10^^^(2.16*10^15) >10^^^(2.16*10^15) Green (1964), Ligocki (2023)
12 >10^^^(10^^^3) >10^^^(10^^^3) Green (1964), Ligocki (2023)
13 >10{2046}3 >10{2046}3 Wythagoras (2016)
14 >10{10^18267}3 >10{10^18267}3 Wythagoras (2016)
15 >10{10^^5}3 >10{10^^5}3 Wythagoras (2016)
16 >{10,1000,1,2} >{10,1000,1,2} Wythagoras (2021), Ligocki (2022)

Note: 'Z' is used for the halting state in these machines since H needs to be used for any machine with at least 8 states. Also note that for n>5, S(n) and Σ(n) are indistinguishable. This is the case for almost all large busy beavers.

To be more precise, here are the exact best known values of S(n):

n S(n) Hyper-E equivalent
1 1
2 6
3 21
4 21
5 47,176,870
6 >10^^15.6046 E10565.1028#14
7 >10^^15.6046 E10565.1028#14
8 >10^^15.6046 E10565.1028#14
9 >10^^30.0410 E12.5609#29
10 >10^^(10^(1.0314*10^15)) E15.0134#2#2
11 >10^^^(2.1619*10^15) E15.3348#1#1#2
12 >10^^^(10^^10^^(2.1619*10^15)) E15.3348#1#3#2
13 >10{2046}3 E10##2046
14 >10{1.7*10^18,267}3 E18267.2304##1#2
15 >10{10^10^10^10^18,705,352}3 E10##(E7.2719#5)
16 >{10,{10^^^10^^^7},1,2} E10##1#(E168#1#1#7#2)

Current 3-symbol records for S(n) and Σ(n):

n S(n) Σ(n) Link
1 1 1
2 38 9
3 1.19*10^17 374,676,383 Ligocki (2007)
4 10^14,072 10^7036 Ligocki (2008)
5 10^14,072 10^7036 Same as above
6 10{6}8 10{6}8 Wythagoras (2016)
7 10{374,676,381}3 10{374,676,381}3 Wythagoras (2016)

Current 4-symbol records for S(n) and Σ(n):

n S(n) Σ(n) Link
1 1 1
2 ≥3,932,964 ≥2050 Ligocki (2007)
3 >10{15}4 >10{15}4 Kropitz (2024)

Current 5-symbol records for S(n) and Σ(n):

n S(n) Σ(n) Link
1 1 1
2 >10^10^10^10^6.5 >10^10^10^10^6.5 Yuan (2024)

Current 6-symbol records for S(n) and Σ(n):

n S(n) Σ(n) Link
1 1 1
2 >10^^10^^(10^10^115) >10^^10^^(10^10^115) Kropitz (2023)

As you can see, the tables for 4 symbols onwards have very few entries. The entries for S(2,5) and S(2,6) have been developing since 2005, but besides a few special cases (see below) we have yet to dive into more than 2 states for them.

As of July 2024, BB(6,2), BB(3,3), BB(2,5) and any combination of more states or symbols has a known "cryptid" machine that cannot be proven until some currently unsolved mathematical problem is solved. See the cryptids wiki page for more details.

Additional records: